Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(7): e28030, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38596039

RESUMO

Environmental challenges related to sewage sludge call for urgent sustainable management of this resource. Sludge pyrolysis might be considered as a sustainable technology and is anticipated to support measures for mitigating climate change through carbon sequestration. The end products of the process have various applications, including the agricultural utilization of biochar, as well as the energy exploitation of bio-oil and syngas. In this research, sewage sludge was pyrolyzed at 500 °C, 600 °C, 750 °C, and 850 °C. At each temperature, pyrolysis was explored at 1hr, 2hrs, and 3hrs residence times. The ratio (H/Corg)at was tapped to imply organic carbon stability and carbon sequestration potential. Optimum operating conditions were achieved at 750 °C and 2hrs residence time. Produced biochar had (H/Corg)at ratio of 0.54, while nutrients' contents based on dry weight were 3.99%, 3.2%, and 0.6% for total nitrogen (TN), total phosphorus (TP), and total potassium (TK), respectively. Electrical conductivity of biochar was lesser than the feed sludge. Heavy metals in biochar aligned with the recommended values of the International Biochar Initiative. Heat content of condensable and non-condensable volatiles was sufficient to maintain the temperature of the furnace provided that PYREG process is considered. However, additional energy source is demanded for sludge drying.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA